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Coupled-Mode Analysis of Highly Asymmetric
Directional Couplers With Periodic Perturbation

B.-H. V. Borges and P. R. Herczfeld,Fellow, IEEE

Abstract—This paper presents an in-depth analysis of highly
asymmetric grating assisted directional couplers. The directional
coupler consists of a polymer waveguide with dimensions and
refractive indices closely matching a single-mode fiber fabricated
atop a Ga0:6Al0:4As/GaAs/Ga0:4Al0:6As waveguide. The struc-
ture is investigated analytically by means of a new orthogonal
coupled-mode theory formulated in terms of the Lorentz reci-
procity theorem. For the first time, the analysis includes three
distinct loss mechanisms, namely, the leakage of power toward
the semiconductor substrate, the power lost to radiation modes
(mode mismatching), and the grating radiation loss.

Index Terms—Directional couplers, grating radiation, leaky
modes, polymer, radiation modes.

I. INTRODUCTION

COUPLING from single-mode fibers to rectangular
waveguides has been the subject of investigation for

many years. The reason lies in the fact that a significant
amount of power is lost as these two waveguides are coupled
to each other. The main loss mechanisms in fiber to rectangular
waveguide coupling are the Fresnel reflections, due to the
impedance mismatching at fiber/waveguide interface, and the
discrepancy between the fiber (cylindrical) and waveguide
(rectangular) geometry. Therefore, it is not surprising that
numerous ideas have proliferated in the literature regarding
structures that yield the lowest insertion loss. The most natural
approach for the problem consists of utilizing waveguides with
dimensions and refractive indices closely matching a single-
mode fiber. This has been investigated by Hammeret al. [1]
who utilized a polished single-mode fiber grating
coupled to a LiNbTa O . Coupling efficiency
of 6% was observed with this configuration. The low coupling
efficiency is attributed to the leakage of power from the
upper waveguide toward the higher refractive index substrate.
Recently, Sunet al. [2] have investigated highly asymmetric
couplers for application in wavelength-division-multiplexed
(WDM) sources, consisting of a WDM laser integrated with
silica glass waveguide to facilitate the coupling to a single-
mode fiber. The structure was analyzed in terms of Floquet
theory.
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The analysis contained in this paper considers a different
approach. A polymeric waveguide, with refractive indices
and thicknesses approximating a single-mode optical fiber,
is fabricated atop a GaAl As/GaAs/Ga Al As asym-
metric waveguide. Light from a single-mode fiber is coupled
initially into the polymer waveguide and then transferred to the
semiconductor guide. The phase mismatch between polymer
and semiconductor modes is compensated by a diffraction
grating patterned at the interface between polymer and semi-
conductor upper clad. The objective in this study is to provide
a better understanding of the loss mechanisms involved when
coupling light between two very dissimilar waveguides. The
high refractive index step between polymer
and semiconductor guide results in a sig-
nificant leakage toward the semiconductor substrate which
must be considered. Since the configuration is a directional
coupler, the natural approach consists of finding a coupled-
mode formulation capable of handling very large refractive
index steps and excessive losses, which requires an orthog-
onal coupled-mode formulation. Nonorthogonal approaches
isolate polymer and semiconductor waveguides and, therefore,
discount leakage loss.

To investigate these devices, different approaches for the
energy transfer mechanism have been proposed. Lee [3] and
Griffel et al. [4] used a nonorthogonal coupled-mode for-
mulation based on reciprocity theorem for grating assisted
directional couplers. Nonorthogonal approaches represent the
modes of the compound structure as a linear combination
of the modes of the individual waveguides. A very simple
coupled-mode approach was presented by Chenet al. [5] for
weakly coupled waveguides and weak perturbations. Donnelly
[6], Huang [7], [8], and Hong [9] utilized a more general analy-
sis in which cross-power terms were introduced to account for
the nonorthogonality of the guided modes. Haus [10], [11] and
Little [12] have adopted variational analysis to obtain coupled-
mode equations accounting for cross-power terms. Although
nonorthogonal approach reduces the algebra involved in the
formalism, it does not provide good information about the
necessary length for optimum power transfer.

A more precise coupled-mode analysis requires the solution
of the entire multilayer structure resulting in waveguide modes
orthogonal to each other. Huanget al. [13] have done a similar
analysis based on local normal modes, where the interaction
of the optical field with the periodic grating is described by
a transfer matrix formalism defined via the mode-matching
technique. Local normal modes have also been used by Weiss
[14] for the analysis of asymmetric directional couplers in
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(a)

(b)

Fig. 1. Highly asymmetric directional coupler consisting of a polymer
waveguide atop a semiconductor waveguide. The phase matching between
polymer and semiconductor modes is provided by a diffraction grating located
on the interface between polymer lower clad and semiconductor upper clad.
(a) Polymer waveguide excited by a single-mode fiber. (b) Semiconductor
waveguide excited by a semiconductor laser.

ion-exchanged channel waveguides. Marcuse [15], [16] has
developed an orthogonal coupled-mode formulation based on
expansion in terms of ideal waveguide modes. This approach
produces excellent results as long as the grating perturbation
is weak.

This paper introduces an extended coupled-mode approach
which is formulated in terms of the Lorentz reciprocity the-
orem. The Lorentz reciprocity theorem is desirable since it
can be applied to media with either gain or loss [4], [17]. The
coupled-mode equations are described in terms of the modes of
the compound structure and, therefore, are orthogonal. Three
major loss mechanisms are included in the analysis for the
first time. These are: 1) radiation modes; 2) leaky modes; and
3) grating radiation loss.

This paper is organized as follows. Section II describes
the highly asymmetric directional coupler investigated in this
paper. Sections III and IV give the theoretical background uti-
lized in this work. Section V introduces the loss mechanisms
included in the analysis. A numerical analysis is provided in
Section VI. Section VII presents some concluding remarks.

II. THE PROPOSEDSYSTEM

The cross section of the baseline III–V structures adopted
for the simulations are depicted in Fig. 1. In Fig. 1(a), a single-
mode fiber is utilized as excitation for the polymer waveguide,
while in Fig. 1(b) a monolithically integrated semiconductor
laser excites the semiconductor waveguide. Both consist of an

asymmetric GaAlAs/GaAs single-mode waveguide epitaxially
grown on an -GaAs substrate. The GaAl As lower
clad is sufficiently thick to isolate the optical
field from the lossy substrate. The top clad is comprised of a
0.887- m-thick Ga Al As layer. The 0.32-

m-thick GaAs waveguide, sandwiched between the GaAlAs
clads, consists of a 0.16m of -GaAs and 0.16 m of
-GaAs layers which form a - junction [18], [19]. This

very thin waveguide layer with the built-in junction exploits
the linear and quadratic electro-optic effects, as well as the
plasma, band filling, and band shrinkage effects to yield a
high figure of merit for index modulation. This structure has
been successfully fabricated as an integrated optic modulator
operating at a wavelength of 1.3m. The pertinent parameters
utilized in this structure are , , ,

, , and for the refractive
indices, and , m, m, m,

m, and for the thicknesses, respectively.
The polymeric waveguide atop the GaAlAs upper clad

is fabricated with commercially available materials, such as
Norland 61,68.1 The fabrication process begins by dispensing a
polymer onto the spinning semiconductor structure to produce
a 1.0- m-thick layer , and later curing it with
UV light. Next, another layer of polymeric material with a
refractive index of 1.56 is spin deposited atop the previous
layer to form a 2.5-m-thick layer. Finally, another layer of
polymer is spin dispensed onto the structure and
UV cured to create the upper clad [20].

III. ORTHOGONAL COUPLED-MODE FORMULATION

This section is concerned with the coupled-mode formula-
tion utilized in the analysis of the highly asymmetric coupler
in Fig. 2. Two important factors need to be considered: the
polymer mode distribution is strongly affected by the presence
of the semiconductor and a strong leakage of power from the
polymer toward the semiconductor material will occur. These
effects are due to the large refractive index step between the
polymer and the semiconductor and necessitate an orthogonal
coupled-mode approach. The derivation will be based on
the coupled-mode formulation presented in [4] and [17],
specifically on the integral form of the Lorentz reciprocity
theorem which can be applied to media with either gain or
loss. It states that any two electromagnetic fields satisfying
Maxwell’s equations and associated boundary conditions obey
the relation

(1)

In highly asymmetric couplers, the concept of symmetric
and asymmetric modes is no longer appropriate, since these
modes are preferentially located either in the upper or lower
slab, respectively. A more fitting definition for these modes is
quasi-top (T) and quasi-bottom (B) modes. The derivation of

1Norland Products, Inc., New Brunswick, NJ, USA.
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(a) (b)

(c)

Fig. 2. Asymmetric coupled waveguide system. (a) Not phase matched. (b) and (c) Phase matched with a diffraction grating.

the coupled-mode formulation is accomplished in two steps,
and for each step two sets of solutions, unperturbed and
perturbed, have to be provided.

Step 1: Let the fields and and the permittivity
represent an unperturbed multilayer structure, i.e., a

structure with no variation along the longitudinal direction.
Since we are concerned with asymmetric directional couplers,
the energy exchange between guides is insignificant. Assume
that the unperturbed mode fields can be represented by the
quasi-top (T) mode solution of the multilayer waveguide

(2)

(3)

Now let the fields and and the permittivity
represent a perturbed multilayer structure, whose perturbation
is provided by a diffraction grating. Because of the grating
perturbation, the fields of the directional coupler are now able
to exchange energy as they propagate along. Therefore, the
perturbed fields have to be represented by a linear combination
of quasi-topand quasi-bottom field solutions with-dependent
amplitudes

(4)

(5)

The second term in (4) is the Fourier expansion of the
periodic perturbation, with and

. Equation (5) is the
transverse component of the perturbed field. The longitudinal
components are obtained via Maxwell equations as follows:

Therefore, the total perturbed fields become

(6)

(7)

Substituting (2)–(4), (6), and (7) into (1) results (after some
algebraic manipulation) in an expression for :

(8)

where the coupling coefficient is given by

(9)
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Step 2: As before, let the fields and and the
permittivity represent again an unperturbed multilayer
structure, and assume the unperturbed mode fields can be
represented by the quasi-bottom (B) modes

(10)

(11)

Assume the same perturbed solution as in Step 1

(12)

(13)

(14)

Substituting (10)–(14) into (1) results in a first-order derivative
equation for

(15)

The coupling coefficients and are defined as in
(9). The effect of the losses can be readily visualized in (8)
and (15) if one allows the propagation constants to be
complex, i.e.,

(16)

where the ’s represent propagation losses. Before substituting
(16) in the coupled equations (8) and (15), one must realize that
the field amplitudes and are rapid varying functions
of . These rapid oscillations can be eliminated by introducing
slowly varying amplitudes, such that

(17)

Substituting (16) and (17) into (8) and (15) results in the
following:

(18)

(19)

Equations (18) and (19) are the coupled-mode equations
employed in the analysis of the highly asymmetric coupler in
Fig. 1.

IV. POWER CONSERVATION FORLOSSLESSSTRUCTURE

In a lossless structure (the transverse components of the
electric and magnetic fields and respective longitudinal propa-
gation constants are real quantities), the coupling coefficients

are also real, and the optical power
associated with the fields is

(20)

where we used (5). Equation (20) can be simplified with the
help of the overlapping integral

(21)

where and . Expanding
(20) and making use of (21) results in the following:

Power conservation requires , which results
in the following:

(22)

Equation (22) is completely satisfied by this orthogonal
coupled-mode formulation.

V. LOSS MECHANISMS

The analytical tools necessary to calculate the individual
loss terms are developed next. Three important loss mech-
anisms are considered in this section, namely, leakage loss,
radiation modes, and grating radiation loss.

A Leakage Loss

A waveguide fabricated with low refractive index materials
(such as polymer) fabricated atop a high index material (such
as semiconductor) acts as a leaky guide. This leakage of power
toward the higher index material results in attenuation repre-
sented by a complex propagation constant. More specifically,
the rate of power leaked is identified by the imaginary part of
the propagation constant which can be obtained via a transfer
matrix method, summarized here for completeness. A full
derivation can be found in [21].

Considering a general multilayered planar waveguide sys-
tem, the solution of the Helmholtz wave equation in each layer

is given by

with

Since only TE modes are considered in this analysis, the fol-
lowing boundary conditions must be satisfied at each interface
as follows:
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The transfer matrix is then obtained by recursively matching
the electric field and its derivatives at each interface and
combining the resulting equations into a matrix form:

where

The leakage is then calculated by solving for
via the “downhill method” [22] for the complex propagation
constants.

B. Radiation Modes

Radiation modes constitute a continuum of modes which are
not confined in the core. They are excited at the input of the
waveguide due to mode mismatch of the polymer guide and
the butt coupled fiber and due to geometrical imperfections
[16]. The study of these modes is complicated by the fact
that a infinitely number can be excited. This problem can
be greatly simplified if the waveguide structure is assumed
to be bounded by metallic walls located very far away from
the guiding structure. This artifice transforms the continuous
spectrum of radiation modes into a discrete and orthogonal set
of modes [23].

Assuming that all guided and radiation modes can be
obtained with this technique, these modes can then be con-
noted by , where extends over guided
and radiation modes. If represents a complete set of
orthogonal modes, then it constitutes a basis and, therefore,
the field of the optical fiber can be written as

(23)

where the ’s are expansion coefficients. To obtain the power
distribution in all modes (guided and radiation) inside the
rectangular structure, the expansion coefficients must be de-
termined. To do so, multiply (23) by and integrate

(24)

where .
The right-hand side (RHS) of (24) may be expanded:

(25)

Using the orthogonality of the fields in (25), we obtain

(26)

Substituting (26) into the RHS of (24) gives

or (27)

Equation (27) represents the overlap between the guided or
radiation modes inside the waveguide and the fiber mode, and
it is considered as a measure of energy lost to radiation modes
at the input of the coupler.

C. Grating Radiation

This section accounts for the radiation properties of gratings
in asymmetric directional couplers. The analysis is an exten-
sion of the study on grating radiation in GaAs:GaAlAs lasers
by Streifer [24] to multilayer directional couplers. The wave
equation for a longitudinally varying structure can be written
as

(28)

where ,
and is the grating period. The Fourier coefficient is
different from zero inside the grating region and for ,
and equal to zero outside. is the average refractive index
of the grating which is given by . Equation
(28) can be further simplified if one assumes that all partial
waves are driven by the fundamental wave ,
which results in a first-order perturbation equation for :

(29)

The RHS of (29) is equal to zero outside the grating layer
and also for , which allows us to write the solution in
terms of homogeneous ordinary differential equations. This is
no longer true in the grating region since the RHS becomes
different from zero . Since the grating layer is assumed
homogeneous, the six-layer structure is now converted into a
seven-layer structure, as shown in Fig. 3. The thickness of the
new layer is given by the grating height and the refractive
index by the average index . For , the RHS of (29) is
zero, so is calculated by solving , as shown in
the Appendix. Once is calculated

is obtained according to

where is the grating period. The power lost by each partial
wave is calculated via a Poynting vector, which gives
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Fig. 3. Longitudinal cross section of the asymmetric coupler. The diffraction grating is substituted by an homogeneous layer with refractive index
n
2

0
= n

2

3
+ n

2

5
=2 and thickness equal to the grating height.

where the first term corresponds to the radiated power into
region 1, and the second term to the radiated power into
region 7. Finally, the expression for the total radiated power
by the grating is given by [24]

with normalized in terms of the power of the fundamental
mode . Now that all the loss mechanisms are described,
we can study the performance of the coupler as a function of
its pertinent parameters.

VI. NUMERICAL EXAMPLES

To validate the theory elaborated in this paper, we utilize the
examples indicated in [15] for TE and TM polarizations. The
longitudinal cross section of the directional coupler is shown
in Fig. 2(b) and (c), and the pertinent values for the refractive
indices and thicknesses of the layers are , ,

, , and , m, and
m. The grating depth for all examples is 0.1m

and the wavelength m. A critical parameter in grating
assisted directional couplers is the grating periodicity. As in
[15], the grating periodicity .

Consider initially, TE polarization [ in (21)]. Having
calculated the electric- and magnetic-field distributions for the
compound waveguide structure, we are now able to solve
the coupled-mode equations (18) and (19). This system of
ordinary differential equation is integrated using fourth- and
fifth-order Runge–Kutta formulas [23]. The initial conditions
at m are and . Two different

grating locations are also considered in this example: grating
on the interface and [Fig. 2(b)] , and
grating on the interface and [Fig. 2(c)] .
The coupling length for total transfer of energy as a
function of the waveguide separation is shown in Fig. 4.
The results obtained with TM polarization for this structure is
shown in Fig. 5. The agreement with the ideal mode expansion
observed for both polarizations is once again remarkable. The
discontinuity observed near m (TE) and m
(TM) is due to a zero crossing of the mode field distribution
of the asymmetric mode inside the grating region. This causes
the coupling coefficient in (21) to vanish, resulting in an
infinite coupling length [15]. This behavior is not observed in
nonorthogonal coupled-mode formulations, once the structure
is analyzed in terms of the modes of isolated waveguides.

The extended coupled-mode analysis is now applied to the
highly asymmetric structures depicted in Fig. 1. The objective
is to gain some insight on how the thicknesses of the different
layers of these asymmetric structures as well as the grating
depth act upon the loss mechanisms. Two different excitation
conditions are considered: a single-mode fiber butt coupled
to the polymer waveguide [Fig. 1(a)], and of a semicon-
ductor laser monolithicaly integrated with the semiconductor
waveguide [Fig. 1(b)]. The wavelength used in both cases is
1.3 m.

A. Excitation From a Single-Mode Fiber

1) Influence of the Polymer Clad Thickness,: In this
simulation the polymer lower clad thickness is allowed
to vary from 0 to 3.0 m, while the GaAlAs upper clad
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Fig. 4. Coupling length as a function of the waveguide separation for a
directional coupler close to synchronism. Solid line is obtained with the ideal
mode expansion [15], and squares with the present theory.

Fig. 5. Coupling length as a function of the waveguide separation for a
directional coupler close to synchronism for TM polarization. Solid line is
obtained with the ideal mode expansion [15], and squares with the present
theory.

thickness is held at 0.5 m. Leakage loss, as expected,
decreases with the increase of by virtue of the smaller
penetration of the exponential tail of the polymer mode into

Fig. 6. Leakage (diamonds), grating radiation loss (squares), and coupling
length (solid line) versus polymer lower clad thicknesst3.

Fig. 7. Power transfer efficiency versus polymer lower clad thicknesst3.
The power coupled into the semiconductor guide is shown as diamonds, and
the power lost to radiation modes as squares.

the semiconductor, as shown in Fig. 6 (diamonds). The grating
radiation loss (squares) and the coupling length (solid line) as
a function of are also shown in this figure. The propagation
constants in the polymer and semiconductor waveguides are
barely affected by changes in, thus the grating attenuation
loss, on the other hand, remains reasonably constant. As the
thickness of the polymer lower clad increases, a better overlap
between fiber and polymer modes is attained, resulting in lower
radiation mode losses (squares), as seen in Fig. 7. The total
losses are too large to allow any significant transfer of power
from the polymer to the semiconductor guide. The maximum
power transfer is 11% for m with a coupling length

m.
2) Influence of the GaAlAs Upper Clad Thickness: The

range of variation for (from 0.5 to 1.0 m) was chosen
in such a way that the semiconductor waveguide still re-
mains single mode. The substrate leakage loss (squares), the
grating radiation loss (diamonds), and the device coupling
length (solid line) are shown in Fig. 8. Simulations of the
coupled-mode solution are plotted in Fig. 9. The power lost
to radiation modes (squares), as expected, is independent of



222 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 3, MARCH 1998

Fig. 8. Leakage (squares) and grating radiation loss (diamonds) versus
GaAlAs upper clad thicknesst4.

Fig. 9. Power transfer efficiency versus GaAlAs upper clad thicknesst4.
The power coupled into the semiconductor guide is shown as diamonds, and
the power lost to radiation modes as squares.

the semiconductor upper clad thickness. The maximum power
transfer is a mere 3.5% for m The decrease of the
coupled power with increase of is due to the fast exponential
decay of the semiconductor field in the grating region.

3) Influence of the Grating Depth: In all the preceding
examples, the grating depth was fixed at 300Å. To investigate
the influence of this parameter on the power transfer efficiency
of the coupler, the grating depth is allowed to vary from
0 to 3000Å. The polymer lower clad thickness is fixed
on 1.5 m. The GaAlAs clad thickness , , and
1.0 m is utilized as a parameter in this simulation. The power
transfer efficiency from polymer to semiconductor waveguide
is now calculated by solving the coupled-mode equations (18)
and (19). The coupled power as a function of grating depth for

m and as a parameter is shown in Fig. 10. The
best coupling condition (10.7%) is achieved for m
and m with m. In this example,
the power coupled into the semiconductor reaches a saturation
point and then starts falling again as a consequence of the
losses. The calculations show that further reduction in the

Fig. 10. Coupled power into semiconductor waveguide versus grating depth
g with GaAlAs upper clad thicknesst4 as a parameter. Polymer lower clad
t3 = 1:5 �m.

Fig. 11. Leakage (diamonds), grating radiation loss (squares), and coupling
length (solid line) versus polymer lower clad thicknesst3.

GaAlAs upper clad thickness cuts the semiconductor mode
off. Therefore, no improvement in the coupling efficiency from
polymer to semiconductor waveguide can be achieved.

B. Excitation from an Integrated Semiconductor Laser

1) Influence of the Polymer Clad Thickness: As in Sec-
tion VI-A, the polymer lower clad is varied again from 0 to
3.0 m while the GaAlAs upper clad is held at 0.5 m.
Leakage, grating radiation, and coupling length are shown
as function of the polymer thickness in Fig. 11. Leakage
and grating radiation losses are calculated independently of
the type of excitation and, therefore, are the same as in
Section VI-A. The solution of the coupled-mode equations
for this example is given in Fig. 12 with squares representing
the power lost to radiation modes, and diamonds the power
transferred to the polymer waveguide. Since the semicon-
ductor waveguide is an extension of the semiconductor laser
used as excitation, the laser and waveguide modes overlap
to 1, drastically reducing the radiation mode loss. This
figure shows an opposite tendency for the coupled power if
compared to the example depicted in Fig. 7, which is caused
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Fig. 12. Power transfer efficiency versus polymer lower clad thicknesst3.
The power coupled into the polymer guide is shown as diamonds, and the
power lost to radiation modes as squares.

Fig. 13. Leakage (triangles) and grating radiation loss (diamonds) versus
GaAlAs upper clad thicknesst4.

by the insignificant radiation mode loss (squares) and by the
extremely low loss experienced by the semiconductor mode.
Consequently, the polymer guide has more energy available to
receive, resulting in better coupling efficiency.

2) Influence of the GaAlAs Upper Clad Thickness: As
in Section VI-A, the thickness of the GaAlAs upper clad
is allowed to vary from 0.5 to 1.0 m while the thickness
of the polymer lower clad is fixed at 1.0 m. Leakage
(triangles), grating radiation (diamonds), and coupling length
(solid line) as a function of are shown in Fig. 13. A
discussion about these quantities is provided in Section VI-A.
The coupled-mode solution for this example is given in
Fig. 14, with squares representing the power lost to radiation
modes, and diamonds the power transferred to the polymer
waveguide. The subtle increase of the coupled power, observed
as increases, suggesting that less energy is lost along the
longitudinal direction when the semiconductor mode field
confinement is increased. As a result, the energy stays longer
in the semiconductor waveguide before it transfers abruptly to
the polymer waveguide. Since the semiconductor guide does

Fig. 14. Power transfer efficiency as a function of the GaAlAs upper clad
thicknesst4. The power coupled into the polymer guide is shown as diamonds,
and the power lost to radiation modes as squares.

Fig. 15. Coupled power into polymer waveguide versus grating depthg

with GaAlAs upper clad thicknesst4 as a parameter. Polymer lower clad
t3 = 1:5 �m.

not experience leakage loss, more energy becomes available
to be transferred to the polymer waveguide. The maximum
power transfer efficiency for this configuration is 18.6% for

m with a corresponding coupling length of
7284.6 m.

3) Influence of the Grating Depth: In this section, the
grating depth is allowed to vary from 0 to 3000̊A. Again,
the thickness of the polymer lower clad is held at 1.5 m
while the thickness of the GaAlAs takes three different values

, , and m. Coupled power as a function
of grating depth for m and as a parameter
is shown in Fig. 15. The coupled power shows an opposite
tendency if compared to the results obtained in Section VI-A,
i.e., more coupling is obtained for shallower gratings and
thicker GaAlAs upper claddings. The best coupling efficiencies
for the structure investigated in this section was obtained for

m and Å and is 19%. The simulations show
that the maximum coupling efficiency from semiconductor to
polymer guide is limited by the thickness of the polymer
lower clad .
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VII. CONCLUSIONS

This paper presented an in-depth analysis of the perfor-
mance of highly asymmetric directional couplers. A new
approach for describing the energy transfer mechanism in a
grating assisted directional coupler has been formulated. This
approach was derived aimed at the investigation of highly
asymmetric directional couplers, and was formulated in terms
of the integral form of the Lorentz reciprocity theorem. The
numerical results agree remarkably well with the ideal mode
expansion technique [15]. The resulting orthogonal technique
is simple, robust, and very easy to implement. It can also
be extended to complex refractive index media and strongly
coupled structures. The theory was then applied to a highly
asymmetric structure consisting of a polymeric waveguide
fabricated on top of a semiconductor waveguide. Three dif-
ferent loss mechanisms were included in the analysis, namely,
the leakage of power toward the semiconductor substrate,
the power lost to radiation modes (mode mismatching), and
the grating radiation loss. On the basis of this asymmetric
structure, the following two distinct excitation conditions were
investigated: a single-mode fiber butt coupled to the polymer
waveguide (the results obtained for this structure predict
a maximum coupling efficiency around 11%), and a laser
monolithically integrated with the semiconductor waveguide.
A great advantage of this configuration over the previous one
consists of the drastic reduction in the loss to radiation modes,
with a significant effect on the coupling efficiency to the
polymer waveguide. The simulations predicted a maximum
coupling efficiency of about 19% for very shallow gratings,

Å. This analysis will also be extended to other
grating shapes, such as blazed gratings, which have been
suggested for air-to-waveguide grating assisted coupling with
very promising results.

APPENDIX

This appendix describes the propagation characteristics of
a planar waveguide coupler with periodic perturbations. The
calculation is performed via first-order perturbation analysis
which assumes that all partial waves generated by the
grating are driven by the fundamental wave :

(A-1)

The RHS of (A-1) is equal to zero outside the grating layer
and also for , which allows us to write the solution in
terms of homogeneous ordinary differential equations. This is
no longer true in the grating region since the RHS becomes
different from zero . Since the grating layer is
assumed as a homogeneous layer in this analysis, the six-layer
structure is now converted into a seven-layer structure, which
is assumed in this derivation as bounded by metallic walls.
The thickness of the new layer is given by the grating height
and the refractive index by (Fig. 3). The
solution of the seven-layer structure is then written as

The equation for corresponds to the nonhomogeneous
solution, with given by [25]

(A-2)

The solution then continues by matching the field and its
derivatives at each interface, resulting in a determinant equa-
tion for such that , where is a 12 12 matrix
with the coefficients multiplying each amplitude and
is a column vector containing the amplitude coefficients
and through and , and is a column vector

(A-3)



BORGES AND HERCZFELD: COUPLED-MODE ANALYSIS OF HIGHLY ASYMMETRIC DIRECTIONAL COUPLERS 225

containing the nonhomogeneous coefficients due to the grating,
shown in (A-3), at the bottom of the previous page, where

The solution of (A-3) is obtained via the perturbation
technique [24], which consists of assuming that all partial
waves are driven by the fundamental component . Since
for the RHS of (A-3) is zero, all we have to do is
calculate by solving . Once is calculated,

is obtained according to

(A-4)

where is the grating period. The amplitudes and
are now easily calculated through a

simple matrix operation, i.e., or .
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